TIR1-like auxin-receptors are involved in the regulation of plum fruit development

نویسندگان

  • Islam El-Sharkawy
  • Sherif M. Sherif
  • Brian Jones
  • Isabelle Mila
  • Prakash P. Kumar
  • Mondher Bouzayen
  • Subramanian Jayasankar
چکیده

Ethylene has long been considered the key regulator of ripening in climacteric fruit. Recent evidence showed that auxin also plays an important role during fruit ripening, but the nature of the interaction between the two hormones has remained unclear. To understand the differences in ethylene- and auxin-related behaviours that might reveal how the two hormones interact, we compared two plum (Prunus salicina L.) cultivars with widely varying fruit development and ripening ontogeny. The early-ripening cultivar, Early Golden (EG), exhibited high endogenous auxin levels and auxin hypersensitivity during fruit development, while the late-ripening cultivar, V98041 (V9), displayed reduced auxin content and sensitivity. We show that exogenous auxin is capable of dramatically accelerating fruit development and ripening in plum, indicating that this hormone is actively involved in the ripening process. Further, we demonstrate that the variations in auxin sensitivity between plum cultivars could be partially due to PslAFB5, which encodes a TIR1-like auxin receptor. Two different PslAFB5 alleles were identified, one (Pslafb5) inactive due to substitution of the conserved F-box amino acid residue Pro61 to Ser. The early-ripening cultivar, EG, exhibited homozygosity for the inactive allele; however, the late cultivar, V9, displayed a PslAFB5/afb5 heterozygous genotype. Our results highlight the impact of auxin in stimulating fruit development, especially the ripening process and the potential for differential auxin sensitivity to alter important fruit developmental processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of two germin-like protein genes during plum fruit development

Germin-like proteins (GLPs) have several proposed roles in plant development and defence. Two novel genes (Ps-GLP1 and 2) encoding germin-like protein were isolated from plum (Prunus salicina). Their regulation was studied throughout fruit development and during ripening of early and late cultivars. These two genes exhibited similar expression patterns throughout the various stages of fruit dev...

متن کامل

Auxin receptors and plant development: a new signaling paradigm.

The plant hormone auxin, in particular indole-3-acetic acid (IAA), is a key regulator of virtually every aspect of plant growth and development. Auxin regulates transcription by rapidly modulating levels of Aux/IAA proteins throughout development. Recent studies demonstrate that auxin perception occurs through a novel mechanism. Auxin binds to TIR1, the F-box subunit of the ubiquitin ligase com...

متن کامل

MiR393 Regulation of Auxin Signaling and Redox-Related Components during Acclimation to Salinity in Arabidopsis

One of the most striking aspects of plant plasticity is the modulation of development in response to environmental changes. Plant growth and development largely depend on the phytohormone auxin that exerts its function through a partially redundant family of F-box receptors, the TIR1-AFBs. We have previously reported that the Arabidopsis double mutant tir1 afb2 is more tolerant to salt stress t...

متن کامل

Complex regulation of the TIR1/AFB family of auxin receptors.

Auxin regulates most aspects of plant growth and development. The hormone is perceived by the TIR1/AFB family of F-box proteins acting in concert with the Aux/IAA transcriptional repressors. Arabidopsis plants that lack members of the TIR1/AFB family are auxin resistant and display a variety of growth defects. However, little is known about the functional differences between individual members ...

متن کامل

The interaction and integration of auxin signaling components.

IAA, a naturally occurring auxin, is a simple signaling molecule that regulates many diverse steps of plant development. Auxin essentially coordinates plant development through transcriptional regulation. Auxin binds to TIR1/AFB nuclear receptors, which are F-box subunits of the SCF ubiquitin ligase complex. The auxin signal is then modulated by the quantitative and qualitative responses of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2014